
Genetic algorithm using the evola package

Giovanny Covarrubias-Pazaran

2024-09-03

The evola package is nice wrapper of the AlphaSimR package that enables the use of the evolutionary
algorithm (EA) to solve complex questions in a simple manner.

The vignettes aim to provide several examples in how to use the evola package under different optimization
scenarios. We will spend the rest of the space providing examples for:

1) Optimizing the selection of one feature with a constraint in other
2) Obtaining a subsample of a population to maximize a feature while constraining the relationship

between possibilities 2a) best parents for the next generation 2b) best crosses of the next generation
3) Optimizing a subsample of size N to be representative 3a) Of its own 3b) For another sample
4) How to specify constraints: 4a) gender 4b) number of times a parent should be used
5) How to optimize the number of progeny to produce per cross
6) Predictive model using GA

Because of CRAN requirements I will only run few generations but please when you run your analysis let it
run for many generations.

1) Optimizing the selection of one feature with a constraint in other

The example presented here is a list of gems (Color) that have different weights in Kg (Weight) and a given
value (Value).
set.seed(1)
Data
Gems <- data.frame(

Color = c("Red", "Blue", "Purple", "Orange",
"Green", "Pink", "White", "Black",
"Yellow"),

Weight = round(runif(9,0.5,5),2),
Value = round(abs(rnorm(9,0,5))+0.5,2)

)
head(Gems)

Color Weight Value
1 Red 1.69 8.20
2 Blue 2.17 5.14
3 Purple 3.08 1.97
4 Orange 4.59 0.53
5 Green 1.41 12.52
6 Pink 4.54 4.32

The task to optimize here is to be able to pick in your bag all the possible gems that maximize the value
with the contraint that your bag would break after 10Kg. In the evolafit function this would be specified as
follows:

1

Task: Gem selection.
Aim: Get highest combined value.
Restriction: Max weight of the gem combined = 10.
res0<-evolafit(cbind(Weight,Value)~Color, dt= Gems,

constraints: if greater than this ignore
constraintsUB = c(10,Inf),
constraints: if smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
traitWeight = c(0,1),
population parameters
nCrosses = 100, nProgeny = 20, recombGens = 1,
coancestry parameters
A=NULL, lambda=0, nQTLperInd = 1,
selection parameters
propSelBetween = .9, propSelWithin =0.9,
nGenerations = 30, verbose = FALSE

)

Noticed that the formula cbind(Weight,Value)~Color specified the traits to be considered in the optimization
problem are specified in the left side of the formula whereas the right side of the formula specifies the term
corresponding to the genes that will form the ‘genome’ of the solution. Each trait in the formula requires a
value for the contraints, weights in the fitness function (i.e., selection index) and lambda (weight for group
relationship between the genes in the genome). The rest of the parameters are the parameters controling the
evolution of the population of solutions.

When looking at the results of the evolution we can observe that the best solution for the traits under the
contraints can be extracted with the bestSol() function.
best=bestSol(res0)["pop","Value"]; best # best solution for trait 1

[1] 24

res0$M[best,]

Red Blue Purple Orange Green Pink White Black Yellow
1 0 0 0 1 0 0 1 1

xa = res0$M[best,] %*% as.matrix(Gems[,c("Weight","Value")]); xa

Weight Value
[1,] 9.9 28.91

The best selection of Gems was the one one found in the M element of the resulting object.

2) Obtaining subsample of a population to maximize a feature while constraining the relation-
ship between possibilities

2a) Best parents for the next generation One situation that occurs in plant and animal breeding is
the so called ‘optimal contribution’ problem where we want to pick a set of parents that can maximize the
gain while managing genetic variance as much as possible. In the following example we take a population of
363 possible parents and pick the best 20 while conserving genetic variance.
data(DT_cpdata)
DT <- DT_cpdata
head(DT)

2

id Row Col Year color Yield FruitAver Firmness Rowf Colf occ
P003 P003 3 1 2014 0.10075269 154.67 41.93 588.917 3 1 0
P004 P004 4 1 2014 0.13891940 186.77 58.79 640.031 4 1 1
P005 P005 5 1 2014 0.08681502 80.21 48.16 671.523 5 1 1
P006 P006 6 1 2014 0.13408561 202.96 48.24 687.172 6 1 1
P007 P007 7 1 2014 0.13519278 174.74 45.83 601.322 7 1 1
P008 P008 8 1 2014 0.17406685 194.16 44.63 656.379 8 1 1

Our surrogate of fitness will be the Yield trait and we will have a second trait to control the number of
individuals we can select. We will set a contraint for the occurrence (occ) trait to 20 but the only trait
contributing to fitness will be Yield (traitWeight parameter).
get best 20 individuals weighting variance by 0.5
res<-evolafit(cbind(Yield, occ)~id, dt= DT,

constraints: if sum is greater than this ignore
constraintsUB = c(Inf,20),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
traitWeight = c(1,0),
population parameters
nCrosses = 100, nProgeny = 10,
coancestry parameters
A=A, lambda= (30*pi)/180 , nQTLperInd = 2,
selection parameters
propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 20, verbose=FALSE)

We then use the bestSol() function to extract the solution that maximizes our fitness function and constraints.
best = bestSol(res)["pop","Yield"];
sum(res$M[best,]) # total # of inds selected

[1] 20

We can use the pmonitor() function to see if convergence was achieved between the best and teh average
solutions.
pmonitor(res)
plot(DT$Yield, col=as.factor(res$M[best,]),

pch=(res$M[best,]*19)+1)

3

5 10 15 20

0
10

00
30

00
50

00

Generation

V
al

ue

5 10 15 20

0
10

00
30

00
50

00

5 10 15 20

0
10

00
30

00
50

00

5 10 15 20

0
10

00
30

00
50

00

5 10 15 20

0
10

00
30

00
50

00

Average.xa
Best.xa
Average.xAx
nQTL.mu
deltaC.mu

0 100 200 300

0
10

0
20

0
30

0
40

0

Index

D
T

$Y
ie

ld

2b) Obtaining optimal N crosses from a population for a given feature A variation of the same
problem is when we want to pick the best crosses instead of the best parents to directly find the optimal
solution for a crossing block. In the following example we use a dataset of crosses with marker and phenotype
information to show how to optimize this problem.
data(DT_technow)
DT <- DT_technow
DT$occ <- 1; DT$occ[1]=0
M <- M_technow
A <- A.mat(M)
head(DT)

4

hybrid dent flint GY GM hy occ
1 518.298 518 298 -8.04 -0.85 518:298 0
2 518.305 518 305 -11.10 1.70 518:305 1
3 518.306 518 306 -16.85 2.24 518:306 1
4 518.316 518 316 2.08 -1.33 518:316 1
5 518.323 518 323 5.65 -2.71 518:323 1
6 518.327 518 327 -16.95 -0.52 518:327 1

The way to specify this problem is exactly the same than with the optimization of parents but the input
information is at the level of predicted crosses instead of individuals.
run the genetic algorithm

res<-evolafit(formula = c(GY, occ)~hy, dt= DT,
constraints: if sum is greater than this ignore
constraintsUB = c(Inf,100),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
traitWeight = c(1,0),
population parameters
nCrosses = 100, nProgeny = 10,
coancestry parameters
A=A, lambda= (20*pi)/180 , nQTLperInd = 100,
selection parameters
propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 10, verbose=FALSE)

best = bestSol(res)["pop","GY"]
sum(res$M[best,]) # total # of inds selected

[1] 99

You can use the pmonitor() or pareto() functions to see the evolution of the solution and see the performance
of the solution selected.
pmonitor(res)

5

2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

Generation

V
al

ue

2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00

2 4 6 8 10

0
20

0
40

0
60

0
80

0
10

00
Average.xa
Best.xa
Average.xAx
nQTL.mu
deltaC.mu

plot(DT$GY, col=as.factor(res$M[best,]),
pch=(res$M[best,]*19)+1)

0 200 400 600 800 1000 1200

−
30

−
20

−
10

0
10

20
30

Index

D
T

$G
Y

3) Optimizing a subsample of size N to be representative

One particular case when we want to pick a representative subsample is when we don’t have the resources to
test everything (e.g., in the field/farm). In this example we use the information from 599 wheat lines to pick
a subsample that maximizes the prediction accuracy for the entire sample. We start loading the data, in
particular the phenotypes (DT) and the pedigree relationship matrix (A).

6

data(DT_wheat)
DT <- as.data.frame(DT_wheat)
DT$id <- rownames(DT) # IDs
DT$occ <- 1; DT$occ[1]=0 # to track occurrences
DT$dummy <- 1; DT$dummy[1]=0 # dummy trait
if genomic
GT <- GT_wheat + 1; rownames(GT) <- rownames(DT)
A <- GT%*%t(GT)
A <- A/mean(diag(A))
if pedigree
A <- A_wheat

Now in order to pick a structured sample we will do a PCA and pick the cluster number 3 to be a subset to
predict later (vp), while we will focus in rest of the population as candidates for the training set (tp).
##Perform eigenvalue decomposition for clustering
##And select cluster 5 as target set to predict
pcNum=25
svdWheat <- svd(A, nu = pcNum, nv = pcNum)
PCWheat <- A %*% svdWheat$v
rownames(PCWheat) <- rownames(A)
DistWheat <- dist(PCWheat)
TreeWheat <- cutree(hclust(DistWheat), k = 5)
plot(PCWheat[,1], PCWheat[,2], col = TreeWheat,

pch = as.character(TreeWheat), xlab = "pc1", ylab = "pc2")

1
22

2

1

3
3

2

3

4

33

4

3

1

3
3

1
2 1

2

2

2

4

4

3

3

1111

3

11

2

1

4

1

2

1

3

3

1
1

2

1
2

1

1
4

3

1 1

1

1 4
3

1

1

1
1

333

5

2

1

1
4

3

3

5

2

3

2

1
3

1

2
1

3

2

11

4

3
1

3
411

1

13 1

4

2

11
11

2 22

1

2 2

1

3

1
1

1
11

3

2

1

22

1

3

1

1

2

1

3
3

1

1

2

4

1

33

3

1
1

2

4

4

1

1 44
4

3

1
1

3
11

5

1

1

3

3

1
2 1

333

1

1

5

1

4

33

11

1

1

3

4
1

2

2

44

2

4

3
33

2

2

13

1

4

22

55

2

1

3

2

1

22

3

44

1

4

3

1

3

33

33

1

3

3

2 5 5

3

1

2

33

2 1
4

3

4

1
4

3

4

3
1

33

1

3 1

52

1

2

3

3

3

5

3

1

4

3

3

3

5

3

4

1

4
1

44

1

1

2

3

1

3

2

2

11111 1
1

1
22

4

22

1
11

1

33

11
1

11
1

1
1

3

1

2

11

1
1

4
11

5555

4
1 1

41
1

11

3

3
3

2222

11

3

2 2

4

1

3

3

11

2

1

11
1

2 1

33

11
4413 1

3

3

1

3

3

333

1
2

2

3

44
1

1
4

3

444

4

2

22
1

2

1

1

1
3

5
5

2

1
2

1

11

5
1

3 1

1

1333

1

3 3

4

3

4

5

3

4

22

44
1

11

22

3

2
333

3

1111

5

11
4

3

3

11

55

2

1

5
5

5

1

11
4

2

1
4

1

11

333

33

1

33

5
5

1

3

33

2
1

2

1
3

33

5

1

3

444

3

1

1

1

222

1
1

3

4

1

5

1

3
1 4

11
2

4
44

1

333

3

111

1
4

3

11

11

1

11

4

1
1 111

4

2

33

411

3

11 44
1

4
1

3

3
3

44

3

1

25

11 1
1

1
1

11
1

33
3

1
11

11
1

133
1 4

2

11

3

1

3

43
1

1

33

33

1

3

5

3

3

5

3

2

4

−15 −10 −5 0

−
4

−
2

0
2

4

pc1

pc
2

vp <- rownames(PCWheat)[TreeWheat == 3]; length(vp)

[1] 159

tp <- setdiff(rownames(PCWheat),vp)

7

3a) Optimizing a subsample of size N to be representative of its own Since the objective is to
select a set of 100 lines that represent best the training set (tp) of ~400 lines we will subset a relationship
matrix for that training set (As).
As <- A[tp,tp]
DT2 <- DT[rownames(As),]

For this particular case there is no trait to optimize (x’a) but we just want to make sure that we maintain as
much variation in the sample as possible (x’Ax). We then just create a dummy trait in the dataset (dummy)
to put all the weight into the group relationship (x’Ax) using the lambda argument. The trait for occurrence
we will use it as before to control the number of individuals to be in the sample.
res<-evolafit(cbind(dummy, occ)~id, dt= DT2,

constraints: if sum is greater than this ignore
constraintsUB = c(Inf, 100),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf, -Inf),
weight the traits for the selection
traitWeight = c(1,0),
population parameters
nCrosses = 100, nProgeny = 10,
coancestry parameters
A=As,
lambda=(60*pi)/180, nQTLperInd = 80,
selection parameters
propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 15, verbose = FALSE)

best = bestSol(res)["pop","dummy"]
sum(res$M[best,]) # total # of inds selected

[1] 100

You can see which individuals were selected.
cex <- rep(0.5,nrow(PCWheat))
names(cex) <- rownames(PCWheat)
cex[names(which(res$M[best,]==1))]=2
plot(PCWheat[,1], PCWheat[,2], col = TreeWheat, cex=cex,

pch = TreeWheat, xlab = "pc1", ylab = "pc2")

8

−15 −10 −5 0

−
4

−
2

0
2

4

pc1

pc
2

3b) Optimizing a subsample of size N to be representative of another population

we can use the covariance between the training population and the validation population to create a new
trait (x’a) that can be used in addition to the group relationship (x’Ax).
DT2$cov <- apply(A[tp,vp],1,mean)

The model can be specified as before with the suttle difference that the covariance between the training and
validation population contributes to the fitness function.
res<-evolafit(cbind(cov, occ)~id, dt= DT2,

constraints: if sum is greater than this ignore
constraintsUB = c(Inf, 100),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf, -Inf),
weight the traits for the selection
traitWeight = c(1,0),
population parameters
nCrosses = 100, nProgeny = 10,
coancestry parameters
A=As,
lambda=(60*pi)/180, nQTLperInd = 80,
selection parameters
propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 15, verbose = FALSE)

best = bestSol(res)["pop","cov"]
sum(res$M[best,]) # total # of inds selected

[1] 69

You can plot the final results and see which individuals were picked.

9

cex <- rep(0.5,nrow(PCWheat))
names(cex) <- rownames(PCWheat)
cex[names(which(res$M[best,]==1))]=2
plot(PCWheat[,1], PCWheat[,2], col = TreeWheat, cex=cex,

pch = TreeWheat, xlab = "pc1", ylab = "pc2")

−15 −10 −5 0

−
4

−
2

0
2

4

pc1

pc
2

6) How to specify constraints

Gender In this case is better if you only create the cross combinations that are possible (e.g., where male
and female can couple) and you handed them to the evolutionary algorithm. That means, the rows of the
crosses to be in the searching space only include the realistic ones.

Number of times a parent should be used In this case you can modify the fitness function to set to a
low value the fitness of solutions that have used too many times the same parent. Using the DT_technow
dataset this would be done the following way:

First you create an incidence matrix for parents in columns and hybrids in crosses:
data(DT_technow)
DT <- DT_technow
DT$occ <- 1; DT$occ[1]=0
M <- M_technow
A <- A.mat(M)

Z=with(DT,sommer::overlay(dent,flint))# Matrix::sparse.model.matrix(~dent-1, data=DT)
rownames(Z) <- DT$hy # needed to link to the QTL matrix

the secons step is to create a new fitness function for the genetic algorithm. Our objective function to be
maximized is normally of the form Yb - d, where Y is the trait values, b is the trait weights, and d is the
group relationship x’Ax. We then are going to put some additional constrait that parents of the crosses can’t
show up more than twice. This can be done in the following way:

10

regular fitness function
fitnessf <-function (Y, b, d, Q, Z) {

fit <- Y %*% b - d
return(fit)

}
new fitness function with constraint
fitnessf <-function (Y, b, d, Q, Z) {

X=Q%*%Z[colnames(Q),]
bad <- as.vector(apply(X,1, function(x){length(which(x > 5))}))
bad <- which(bad > 0)
fit <- Y %*% b - d
if(length(bad) > 0){fit[bad,1]=min(fit[,1])}
return(fit)

}

Notice that we have added a matrix product Q%*%Z to see how may times each parent is used in the
proposed solution of crosses. The next step would be to provide the new fitness function to the evolafit()
function and the additional argument Z which is the overlay matrix formed in the first chunck of code:
res<-evolafit(formula = c(GY, occ)~hy,

dt= DT,
constraints: if sum is greater than this ignore
constraintsUB = c(Inf,50),
constraints: if sum is smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
traitWeight = c(1,0),
population parameters
nCrosses = 100, nProgeny = 10,
coancestry parameters
A=A, lambda= (10*pi)/180 , nQTLperInd = 40,
new fitness function and additional args
fitnessf = fitnessf, Z=Z,
selection parameters
propSelBetween = 0.5, propSelWithin =0.5,
nGenerations = 15, verbose=FALSE)

best = bestSol(res)["pop","GY"]
xa = (res$M %*% DT$GY)[best,]; xa

29319
390.07

xAx = res$M[best,] %*% A %*% res$M[best,]; xAx

[,1]
[1,] 38.13456

sum(res$M[best,]) # total # of inds selected

[1] 35

Now, last but not least we check how many times each parent was used:
check how many times an individual was used in the final crosses
crosses <- data.frame(cross=names(which(res$M[best,] == 1)))
table(unlist(strsplit(crosses$cross,":")))

11

##
1863 3205 3206 3207 3208 3209 3212 3215 3216 3217 3219 3283 330 338 348 352 3605 3606 3607
1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2
3608 3609 3613 3615 3616 3617 3618 3619 365 377 389 392 396 397 410 430 444 457 475
1 1 1 2 1 2 1 1 1 1 1 3 1 4 1 1 1 1 1
482 490 536 560 578 586 596 604 608 632 643 647 662 671 679 714 725 742 793
1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1
797
1

check performance of crosses selected
plot(DT$GY, col=as.factor(res$M[best,]),

pch=(res$M[best,]*19)+1)

0 200 400 600 800 1000 1200

−
30

−
20

−
10

0
10

20
30

Index

D
T

$G
Y

6) Predictive model using GA

The following example show how the genetic algorithm can be tweeked to do a predictive model of the type
of of a linear regression.
data("mtcars")
mtcars <- as.data.frame(apply(mtcars,2,scale))
mtcars$inter <- 1
head(mtcars)
relationship between the 2 variables
plot(mpg~hp, data=mtcars)

12

−1 0 1 2

−
1

0
1

2

hp

m
pg

mod <- lm(mpg~hp, data=mtcars);mod

##
Call:
lm(formula = mpg ~ hp, data = mtcars)
##
Coefficients:
(Intercept) hp
6.331e-16 -7.762e-01

create initial QTL effects
a <- seq(-1,1,.1);a

[1] -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
[19] 0.8 0.9 1.0

dt <- as.data.frame(expand.grid(a,a))
colnames(dt) <- paste0("alpha",1:ncol(dt))
dt$qtl=paste0("Q",1:nrow(dt))
dt$inter <-1; dt$inter[1] <- 0
dt$count <- 1; dt$count[1] <- 0
head(dt)

alpha1 alpha2 qtl inter count
1 -1.0 -1 Q1 0 0
2 -0.9 -1 Q2 1 1
3 -0.8 -1 Q3 1 1
4 -0.7 -1 Q4 1 1
5 -0.6 -1 Q5 1 1
6 -0.5 -1 Q6 1 1

create n samples equivalent to the number of progeny
you are planning to simulate (e.g., 1000)
sam <- sample(1:nrow(mtcars),500,replace = TRUE)
y <- mtcars$mpg[sam]

13

one <- rep(1,length(y))
x <- mtcars$hp[sam]
x2 <- mtcars$hp[sam]ˆ2
X <- cbind(one,x)
plot(x,y)

−1 0 1 2

−
1

0
1

2

x

y

Task: linear regression
res0<-evolafit(formula=cbind(inter,alpha1)~qtl, dt= dt,

constraints: if greater than this ignore
constraintsUB = c(Inf,Inf),
constraints: if smaller than this ignore
constraintsLB= c(-Inf,-Inf),
weight the traits for the selection
traitWeight = c(1,1),
population parameters
nCrosses = 50, nProgeny = 10, recombGens = 1,
coancestry parameters
A=NULL, lambda=0, nQTLperInd = 1,
least MSE function (y - Xb)ˆ2
fitnessf=function(Y,b,d,Q,x,y){ apply(((y%*%Jc(500)) - (X%*%t(Y)))ˆ2,2,sum) },
selection parameters
propSelBetween = 0.5, propSelWithin =0.5, selectTop=FALSE,
nGenerations = 20, y=y, x=x, verbose = FALSE

)

develop a joint fitness function that uses all traits

pmonitor(res0)

14

5 10 15 20

0
1

2
3

Generation

V
al

ue

5 10 15 20

0
1

2
3

5 10 15 20

0
1

2
3

5 10 15 20

0
1

2
3

5 10 15 20

0
1

2
3

Average.xa
Best.xa
Average.xAx
nQTL.mu
deltaC.mu

this time the best solution is the one that minimizes the error
error = (stan(y) - apply(X*res0$pheno,1,sum))ˆ2
best=which(error == min(error))[1]
xa=res0$M[best,] %*% as.matrix(dt[,c("inter","alpha1")]); xa

inter alpha1
[1,] 18 -14.3

plot(as.matrix(mtcars[,c("inter","hp")]) %*% t(xa) , mtcars$mpg,
main="Correlation between GA-prediction and observed") # GA

15

−20 −10 0 10 20 30 40

−
1

0
1

2

Correlation between GA−prediction and observed

as.matrix(mtcars[, c("inter", "hp")]) %*% t(xa)

m
tc

ar
s$

m
pg

plot((mtcars$hp * mod$coefficients[2]) + mod$coefficients[1] , mtcars$mpg,
main="Correlation between lm-prediction and observed") # LM

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
1

0
1

2

Correlation between lm−prediction and observed

(mtcars$hp * mod$coefficients[2]) + mod$coefficients[1]

m
tc

ar
s$

m
pg

Correlation between GA-prediction and observed
cor(as.matrix(mtcars[,c("inter","hp")]) %*% t(xa) , mtcars$mpg)

16

[,1]
[1,] 0.7761684

Correlation between lm-prediction and observed
cor((mtcars$hp * mod$coefficients[2]) + mod$coefficients[1] , mtcars$mpg) # LM

[1] 0.7761684

7) How to optimize the number of progeny to produce per cross

The advice here is to upload directly the phased genotypes (haplotypes) to the AlphaSimR machinery and
simulate the possible crosses to explore how many individuals are required to sample a given trait (oligogenic
or polygenic) with a given probablility. No need to use the evola package.

Literature

Giovanny Covarrubias-Pazaran (2024). evola: a simple evolutionary algorithm for optimization of complex
problems. To be submitted to Bioinformatics.

Gaynor, R. Chris, Gregor Gorjanc, and John M. Hickey. 2021. AlphaSimR: an R package for breeding
program simulations. G3 Gene|Genomes|Genetics 11(2):jkaa017. https://doi.org/10.1093/g3journal/jkaa017.

Chen GK, Marjoram P, Wall JD (2009). Fast and Flexible Simulation of DNA Sequence Data. Genome
Research, 19, 136-142. http://genome.cshlp.org/content/19/1/136.

17

https://doi.org/10.1093/g3journal/jkaa017
http://genome.cshlp.org/content/19/1/136

	1) Optimizing the selection of one feature with a constraint in other
	2) Obtaining subsample of a population to maximize a feature while constraining the relationship between possibilities
	3) Optimizing a subsample of size N to be representative
	3b) Optimizing a subsample of size N to be representative of another population
	6) How to specify constraints
	6) Predictive model using GA
	7) How to optimize the number of progeny to produce per cross
	Literature

